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The Scattering Parameters and Directional
Coupler Analysis of Characteristically

Terminated Asymmetric Coupled
Transmission Lines in an
Inhomogeneous Medium

KRZYSZTOF SACHSE

Abstract —The scattering matrix of asymmetric coupled two-line stric-

tures in an inhomogeneous medium terminated in a set of impedances

which are equaf to the characteristicimpedancesof the individual, uncou-
pled lines has heen derived in terms of the coupled-modeparameters.It
has been proved that the structure can compose an idesd, backward-cou-

pling directional coupler, perfectly matched aud isolated at all frequencies,

if the indnctive k~ and capacitive kc coupling coefficients of the coupled

lines are equal. The effect of the nonideal equalization of the coupling

coefficients on tbe coupler critical parameters is then investigated. The

normal-mode parameters (mode numbers and mode impedances) in the

proximity of the point when k~ = kc and at that point are also examined.

Numerical results confirm the validity of the developed analysis and prove

the possibility of a very high direetivity asymmetrical coupler design.

I. INTRODUCTION

A SYMMETRIC coupled lines seem to be of less prac-

tical importance in microwave passive circuits than

their symmetric counterparts. The main reason is that

directional coupling occurs most distinctly and in a more

useful practical form when the coupled lines are identical.

Furthermore, in contrast to the symmetric arrangement, it

is much more complicated to calculate parameters of

asymmetric coupled lines and to analyze and design pas-

sive circuits with these lines.

Nevertheless, recently [1]-[9] a comprehensive study of

the physical behavior of guided modes and properties of

asymmetric coupled lines in an inhomogeneous medium

has been made, and several papers [10]–[16] dealing with

their analysis and applications have been published.

Growth of interest is due to the possibility of achieving

tightly coupled sections of transmission lines in certain

structures which are electrically nonsymmetrical, although

they can be structurally symmetrical [13], [14]. Using an

asymmetrical design of forward-coupling microstrip hy-
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brids [16], a much higher directivity and a considerably

wider bandwidth can also be ach~eved.

Among passive circuits where asymmetric coupled lines

can be applied, directional coupl~ers constitute an impor-

tant class, of devices commonly used in microwave tech-

niques. In 1966 Cristal [17] was the first to introduce

coupled lines of unequal characteristic impedances in de-

signing asymmetrical couplers, offering the potential to

realize simultaneously in a single device directional cou-

pling and impedance transformation. Cristal’s method of

designing an ideal coupler, perfectly matched and isolated

at all frequencies, is valid only in the case of homogeneous

TEM lines. However, it is still used in designing inhomoge-

neous coupled-line couplers [14], because of a lack of an

exact rigorous design approach. The approximate TEM

approach can give reasonably good responses in all cases

when the relative difference between phase velocities of c

and r independent normal mode> propagating in a system

of nonhomogeneous asymmetric coupled lines is small

enough. Then, one can accept that modal characteristic

impedances of two lines, Z,C and Z,m, i =1,2, are appt_oxi-

mately equal to the even- and odd-mode impedances de-

fined by Cristal for each individual line of a set of asym-

metric coupled lines in a homogeneous medium, 2,, and

2,., respectively.

Gunton and Paige [11] have shown that for a general

asymmetric coupled-line coupler, resistive terminations can

be chosen so that the normal modes of the coupled system

are reflected without conversion from one to the other.

The introduction of such “non-mode-converting” (n.m.c.)

terminations leads to relatively simple scattering S-param-

eter expressions describing the behavior of very general

directional couplers. These S parameters are expressed in

terms of the normal-mode parameters (voltage mode mtm-

bers R, and R. and mode impedances Z,c and 2,.).

Moreover, the well known “backward” coupled-line cou-

plers belong to that class of couplers so terminated. These

couplers are ideal, provided they are matched and the
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normal-mode waves are propagating with the same veloc.

ties. This latter condition can be satisfied only in the case

of the symmetrical lines. The conclusion is that the asym-

metrical “backward” coupler with inhomogeneous coupled

lines terminated by the n.m.c. impedances cannot be ideal;

if it exists, their terminating impedances cause the conver-

sion of the normal modes.

The authors of [14], [9], and [13] have observed that, for

specific structural parameters of asymmetric coupled lines

in an inhomogeneous medium, the impedances Z,C and/or

Z,n can assume values which are extremely high or ex-

tremely low (see, e.g., [14, table II]), and they can even be

negative [9], [13]. Then, the modal impedances are not

comparable to the ones defined by Cristal, and his approx-

imate method of coupler design cannot be employed. This

is the case that circuit designers do not know how to deal

with [18]. The singular behavior of the normal-mode pa-

rameters of asymmetric coupled lines has not yet been

clearly explained.

The purpose of this paper is to answer the question

raised on the existence or nonexistence of an ideal asym-

metric coupler and to present a method of design that can

improve substantially the performances of couplers de-

signed on the basis of existing methods. In Section II we

will derive— applying a coupled-mode formulation of in-

homogeneous lines successfully developed in the case of

symmetrical lines [19] —explicit expressions for the S pa-

rameters of the asymmetrical structure. The terminating

impedances are chosen in the most obvious and simple

way; namely they are chosen to be equal to the characteris-

tic impedances of the individual, uncoupled lines. It will be

proved in this section that such a choice of terminations

together with equalization of the coupling coefficients im-

poses conditions which are necessary and sufficient to

realize the ideal coupler. The effect of a nonideal equaliza-

tion of coupling coefficients on the return losses and

coupler directivity will then be investigated. In Section III,

the normal-mode parameters in proximity to the point

where k~ = kc will be examined in detail, and simple new

formulas useful in asymmetric coupled-line coupler design

will be derived. Numerical results are given for specific

applications.

II. COUPLED-MODE ANALYSIS

The first part of this section restates some of the derived

results which are required and serve to introduce the

notation. The second and third parts solve the problems

raised above, in particular, deriving the S-parameter ex-

pressions for the structure of a generalized coupled-line
coupler (shown in Fig. 1) for the two cases where k~ = kc

and k~ = kc, respectively.

A. General Description

There are two alternative forms of the differential equa-

tions describing a lossless pair of coupled transmission

lines: the first is written in terms of voltages Vl, Vz and

currents II, Iz [2], [11], the second in terms of four

well-known forward and backward power waves: a+, b +

Fig. 1. Schematic representation of an asymmetric coupled-hne coupler.

and a_, b_, respectively [19], [11]. These waves, which are

treated as the coupled modes, are defined by
, 1

b+=— (V2 + Z, I,)
- 2&

where Z, = ~~, and Ll and C, are the self-inductances

and self-capacitances per unit length of line i in the

presence of the other (i = 1, 2).

In the literature, properties of asymmetric coupled lines

are customarily described with their normal-mode parame-

ters, defined by Tripathi [2] and obtained from solving the

V– I equations. From that analysis the Z matrix has been

derived. There is the simple matrix relationship between

the Z and S parameters:

(s)= [(z)+ (u)] -’[(z)-(u)] (1)

where U is the unit matrix. This expression, unfortunately,

brings very complicated, almost intractable formulas for

the scattering parameters [1]. Therefore, we have chosen an

alternative approach, in which the coupled-mode equations

are solved together with the boundary conditions at the

ports of the system.

Assuming a propagating wave term of the form eX“t- ~’)

(CJ= 2m~, ~ the frequency, # the propagation constant)

results in four normal modes of the coupler, two with

positive eigenvalues and two with negative ones, corre-

sponding to a pair of modes propagating in each direction.

The eigenvalues are + DC and ~ /lm, where PC and ~m are

given [19] by

Br=floJiZ3 (r=corm). (2a)

Here,

(2b)

and LW, and Cm, are the mutual inductance and mutual

capacitance per unit length, respectively.
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The eigenvector for the coupled-mode formulation can

be easily found and written in two useful forms:

a+

H’HI
8,a+ ?’l, r

bh 1 az, b+ 1 V,
——

~ ~3, r

and —
a_ , ?’3, /’@_ —;

b_ , ~4, r b_ , Y4, r

where

+i31~2(+d2)}@m

%r(y4,r) = {2m&(l) )msd

~4,,(Y3,r) = ((PI(2) +&)( B2(l) -Br)

-~1p2(s*-O)@X~

8,( V,) = (Pl+&)(P2(l) –P,)(B2+A)

- W2(B2(I) - 1$)~2

1 1

(3)

s=~(kc+~L)and~=;(~c-~L).

In this short notation the subscripts 1 or 2 in parentheses

refer to the description of y,,, and v,, and the eigenvalues

+ ~, are associated with the eigenvectors labeled + r.

B. The “Backwar#’ Directional Coupler Analysis (k~ = kc

=s, d=O)

The results reviewed in subsection A make it possible to

investigate the behavior of coupl,ed lines terminated so that

they form a coupler with a voltage V’l at its port 1, as is

shown in Fig. 1. In general, the voltage generator Vgl and

terminating impedances Zl~ = ZI and Z2~ = 22 will launch

four normal modes, which means that each coupled mode

a ~, b ~, a_, and b_ can be regarded as a linear combina-.,
tion of launched modes:

Ale ‘J8cX +

where (A, +,) are the eigenvectors associated with eigen-

values t ~r~ and AI, A z, A J, and A4 are the amplitudes of

launched modes, which can be estimated from the bound-

ary conditions at x = O and x = 1. However, considering

the complicated expressions for the eigenvectors given by

equations (3), this task seems to be difficult. Therefore,

taking into account that the well-known backward-cou-

pling couplers work purely only for k~ = kc =s (d= O),

we restrict further analysis to that single case. From (2) we

obtain

The sign in (5a) can be chosen quite arbitrarily, without

any repercussions on the analysjs. As will be shown in

Section III, for the case where k~ = kc and in proximity to

that point (for k== kc), two normal modes have the

voltage vector in phase (and current vector in antiphase).

This is in contrast to the situiition which appears in

commonly analyzed structures, e.g. coupled microstrips,

where one of the two modes has voltage (and current)

vectors in phase and is called even or c mode and the other

has them in antiphase and is called odd or T mode. Let us

assume that

Then, the following identity can be proved:

B,+ BC=P, +P. for ~1 > P2

(5b)

Thus it is evident that, for the nonhomogeneous lines when

Pl # l?2, the normal modes for asymmetric coupled lines in

an inhomogeneous medium are propagating with different

velocities.

The eigenvectors associated with ~ PC and ~ ~= eigen-

values can be given (for the case when k~ = kc) in the

form

a+

)[
1

b+ o—
a_— O

b_ _v l\q )

(6)

where

ms fln-P,— ..—
q=/3c+f12y~s”

The form of these vectors clearly shows the mechanism of

backward contradirectional coupling in which forward

waves ( + modes) can only couple to backward waves

(– modes).

Since the eigenvectors have already been found, we can

write two sets of equations by inserting x = O and x = 1
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where (c) is a matrix whose columns are eigenvectors given

by (6); 8= and f3fi are electric lengths of coupled-line

sections for c and n modes, respectively; and a, and b~

are the incident and reflected waves at port j. From (7) we

can easily obtain the transfer T matrix, relating the inci-

dent and reflected waves at the input (1,2) and output

(3, 4) ports:

(8)

where (T) = (c)(d) and (d) is a matrix obtained by inver-

sion of the c matrix and by multiplying their rows by eJ°C,

e ‘Jo,, e Jo., and e ‘J9W, respectively. The following formulas

for the T parameters result:

TZ3= T14*

T31= T34 = O T32= – T23

T41= – T14 T42= T43= O

Using relations between the S and

obtain

TY3= T1l*

Tu = T22* .

T parameters, one can

Sll = S22= S33= S44= o S14= S41= S23= S32= o
jK sin 8

S12 = S21= S34 = S43=
~cosO+jsinO

&K2
S13= S31=

4=cos9 -t jsinf3e-Jeu

S24 = S42= S13e‘J28U (lOa]

where

2q 19C+ 13T
K=—

I+qj
o=—

2
u= ~ . (lOb)

Cv

The above results of analysis reveal the following prop-

erties of the structure of asymmetric coupled lines when

they are “compensated’ ( k~ = kc) and terminated charac-

teristically ( Z,~ = Z,): 1) The structure composes an ideal

“backward” contradirectional coupler at all frequencies. 2)

The frequency dependence of the coupling and transmis-

sion losses in the main line are expressed by the same

relations as for conventional couplers (in both symmetrical

and asymmetrical arrangements of homogeneous coupled

lines) [19], [17]; the difference consists only in replacing in

the known formulas the coupling coefficient k with the

effective coupling coefficient K, which is a function of s

and a so-called asymmetry factor n, defined as ~2 /~1 for

~1 > fi2 or P1/fi2 for PI ~ P2. 3) As we can see, the phase

fK(s,n)/s

‘= ‘K
o 1s o in

&
u(s, n)

1
S.1

s,

S.11 I

o In

Fig. 2 Behavior of the K(s, n ) and U(S, n) functions.

shift between the output signals At = 7/2(1+ ~/~O. u),

where ~0 and ~ are the center frequency (for O = r/2) and

the sample frequency, respectively. Deviation of the phase

shift from 90° is proportional to the frequency and to the

U(S, n ) function which evaluates the relative difference

between phase velocities of the c and n modes. The

behavior of the K(s, n ) and U(S, n ) functions is illustrated

by curves plotted in Fig. 2.

The conclusion that arises from the behavior of these

functions is as follows: l)The coupling decreases with an

increase in asymmetry. For the case where phase constants

/?, and ~2 are substantially different (n= O), the effective

coupling of the lines is weak even if the coupling coeffi-

cient of these lines is high. 2) The higher the degree of

asymmetry, the higher the deviation of phase shift from

90°. For tightly coupled lines a small difference in the

phase constants can substantially perturb the phase re-

sponse of the coupler.

In order to confirm the validity of the developed analy-

sis, the S parameters as a function of the normalized

frequency ~/~0 have been calculated, assuming the follow-

ing coupled-mode parameters: ZI = 50 0, 22 = 70 0,

P@l = 0.9, and s =0-5. These calculations have been
carried out using two independent methods of analysis,

namely the method applying coupled-mode formulation,

which is the one presented here, and the method developed

by Tripathi [2] that formulates the Z matrix, mentioned

above in subsection A. In other words, the S parameters

have been calculated using equations (lOa) (the result of

the first method of the analysis) and equations (1) (the

result of the second). The effective coupling coefficient K

and relative difference of the mode phase velocities u,

computed according to equations (lOb), are equal to 0.4993

and 0.06075, respectively. Next, the normal-mode parame-
ters which are necessary for the second calculations have

been estimated using expressions derived by Kal et al. [7,

eqs. (4)–(6)] and appear as follows: ZIC = – Z17 = 50 fl =

Zl, Z2T = – Z2C = 70 L?= Z2, RC = 0.316534532, and Rr

= 4.42289816. As has been stated from the second calcula-

tions (using (l)), ISJJ1, lSlql, and IS231are less than 10-8 at
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all frequencies. It has also been found that the frequency

responses of coupling, transmission losses, and of phase

shift agree exactly with the ones calculated using equations

(lOa).

The mode impedances that have been calculated and

presented here reached unexpected, negative values. The

singular behavior of the normal-mode parameters in prox-

imity to the point when k== kc and at that point will be

discussed in Section III. We shall present below the cou-

pled-mode analysis extended to the case when d # O in

order to determine the effect of nonideal equalization of

the inductive and capacitive coupling coefficients on the

coupler critical parameters.

C. Perturbation of the Coupler Critical Parameters

(d+ O, d/s< 1)

Using general expressions for the eigenvectors given by

equations (3), restricting the analysis only to the case

where d/s <<1 in order to get simpler final formulas, and

developing the coupled-mode analysis in the same fashion

as was done previously, we obtain the following terms of

the c and d matrices:

C1l = C22= C23= C14=1 C41= C33= q

1
c32=cu=—

4

Czl = qal(d/s) C31 = qbl(d/s)

clz=~aJ(d/s) C,, = :b,(d/s)

C13 = qa3(d/s) C43 = qb~( d/s )

czl=~ai(d/s) c,, =;b,(d/s)

where

%= [( Bl+PJ(P2+ ll)+fllB2s2]/a

~2= [(&-& )( B2-flc)+&f12S2]/a

a3= [(~1–~.)(P2–P.)+~l~2s2]/b

ad= [(&+& )(~2+&)+&~2s2]/b

bl = 2Ms~2/a b2’2msp1/a

b~ = 2ms~1/b bb = 2ms~2/b

a= (A+L3C)(LZ–L3C)-M32SZ

b=(&+Bn)(B1 -B.) -&B2s2

(11)

and

dll = peJO ddl = – pq2e-JO” d22 = – pq2e ‘JgL

d32 = peJo~

d23 = – ~dz2 d~~ = – qdyl dl~ = – qdll
4

d.d = – ~d.l
4

(

1

1
d21 = pq2 C21+ qcjd – q2c2d – ~: C31 e-Jo’ (d/s)

(

1

)
d31=pq2 – ~c21– qc~d+ C24+ ~c~l e’e”(d/s)

4

(

1

)
d12 = pq2 q2c12 + ;C43 – qcd2 – C13 eJe’ (d/s)

(

1

)
d42 =pq2 – yc12– ~cd~– C13– qcd2 e-Jo~( d/s)

4

(

1
d13 = pq2 – :

)
Clz — C43— C42+ —C13 eJ°C( d/s )

9

d~~ = pq2(c43 + qcn – qcn – c4;, ) e-J’~(d/s)

d24 =pq2(– C34– qc21+ C31+ qc24)e-J@~(d/s)

(

1 1

)
d34= pq2 C34+ ;C21– C31– –C24 eJo-(d/s) (12)

4

where

P=L–.
l– 4,2

By multiplication of these two matrices, the transfer T

matrix can be obtained and used for calculating the cou-

pler parameters. It has been proved that coupler matching,

directivity, and phase shift are the only ones to be pertur-

bated substantially when the relative difference between

coupling coefficients, d/s, increases. The coupler directiv-

ity, for instance, can be computed from the following

relation:

D(dB) = 2010g (L/M) + 2010g ls/dl (13)

where

L=~sin841– K2cos20

M=~(SsinOucos O + Tcos 0usind)2+ (Vsin6usint9)2

()
S= q–~ al+(l–q2)b4 T=q(a1+a4)–bl–b4

1
V=; a1+qaA+q2b4–bl.

Similar relationships can be derived for calculating the

reflection coefficients ISll[ and 1S221.

The two examples of numerical calculations illustrate

the usefulness of the above analvsis. In the first. we have.
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Cross-sectional view of coupled microstnp lines (a) without and

m
u
G
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(b) with dielectric overlay
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\
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u
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Fig. 4. Couphng, reflection coefficient I,SII 1,and directlvity against nor-

malized frequency O for a coupler with Fig. 3(a) configuration of
coupled lines (WI /h = 0.4, w2/h = 0.11, s/h = 0.08, 67 = 10) — [12],

optimized terminations Zl~ = 60.7 Q and Z2T = 85.0 L?; — .— this

theory, characteristic terminations Zl~ = 21= = = 61.0 Q and

Z,, = Z: =~~ = 84.6 Q.

estimated the frequency-dependent parameters of the cou-

pler designed by Tripathi [12], who applied the n.m.c.

termination concept, the Z– S matrix transformation, and

an iterative procedure which can optimize the coupler

performance in terms of the terminating impedances. The

structural parameters of the asymmetric coupled mi-

crostrip lines shown in Fig. 3(a) have been chosen to be

the same as those of Tripathi (wl/h = 0.4, w2/h = 0.11,

s/h = 0.08, and c, =10).

The results of our calculations carried out using the

spectral-domain approach and variational method [20] are

L1/po = 0.4683, Lz/po = 0.6376, L,ti/po = 0.3015, Cl/co

= 17.88, Cz/cO = 12.66, and C~/CO = 7.548. From these

self- and mutual inductances and capacitances the follow-

ing coupled-mode parameters have been estimated: k~ =

0.5518, kc= 0.5017, ~z/~l = 0.9817, ZI = 61.0 Q, and Zz

= 84.6 S?.The characteristics computed according to equa-

tions (10)–(13) can be compared to the ones derived by

Tripathi [12] (see Fig. 4). It should be pointed out that the

terminating impedances obtained from Cristal’s approxi-

mate TEM approach (assumed by Tripathi as a suitable

starting point for the optimization procedure) give a rather

poor matching (for Zl~= ~~ = 49.9 L2 and Z2~=

1==103.2 O, ISIII is even less than -15 dB).
Though the optimization procedure used by Tripathi made

“m’
u

e-
0

-20
‘[

10

I 5=0.85 n=]

0
0.1

.m
31d0

-20 -

Fig. 5. Coupler directiwty D(dB) = Dl(dB) + 2010g Is/d I against nor-
malized frequency 8 = ( 7r/2)~/~0 with n and s coefficients as parame-
ters.

it possible to minimize the reflection coefficient at the

input ports, the transmission coefficient between the input

and the isolated port remained high. The reason is that the

parameters of the coupler designed utilizing both the n.m.c.

termination concept and the optimization procedure de-

pend on the difference between the normal-mode phase

velocities (in that case Au/u = 0.0363). The almost ideal

realization of that coupler achieved in the overlayered

microstrip structure (shown in Fig. 3(b)) will be presented

in Section III.

In the second example, mentioned before, we present

numerical calculations of the frequency-dependent direc-

tivity of the coupler carried out using equations (13) for

the symmetrical version (n =1) of the coupler as well as

the asymmetrical one with a high degree of asymmetry

(n= 0.1). The results of the calculations are plotted in Fig.

5. An excellent agreement with the results of similar calcu-

lations carried out using Krage and Haddad’s expressions

[19], derived for the symmetrical structure of coupled lines,

has been stated. Generally, as can be seen from Fig. 5, the

directivity of the asymmetrical coupled-line coupler is

higher than that of the symmetrical counterpart.

III. DESIGN OF A COUPLER WITH IMPROVED

DIRECTIVITY AND BEHAVIOR OF

NORMAL-MODE PARAMETERS

To design a very high directivity coupler, it is necessary

to apply the structure of coupled lines for which the

equalization of the coupling coefficients might be achieved.

Such a structure is expected to be a coupled line structure

with a dielectric overlay (shown in Fig. 3(b)). In order to
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9
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J
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5
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kL=const

= —————x

L k
x

,

0.001 0.01
hi/h O.l

1.
(c) (d)

(b) Fig. 7. (a) Effective dielectric constants cef,, = {&/(~JG)}’j~=
c, n. (b) Voltage mode numbers R,. (c), (d) Modaf characteristic

Fig. 6. (a) Self-capacitances Cl and Cz and (b) coupling coefficients kl, impedances Z,,, L=1,2, of coupled lines with Fig. 3(b) configuration
and kc of coupled lines from Fig. 3(b) versus jl /h for ~,1=16 (—) versus hl /h. Crl = C,. The structural parameters of coupled hnes are
and 10 (— .—). The structural parameters of coupled lines are the given in Fig. 4.
same as those given in Fig. 4.

prove its usefulness in a high-directivity asymmetric cou-

pler design, the coupled line parameters have been calcu-

lated versus the dielectric overlayer thickness hl for several

values of the dielectric constant of this layer c ,1. The same

structural parameters as those of Tripathi and the ones of

our previous calculations have been chosen. The self-

inductances and the mutual inductance per unit length of

the lines have already been calculated, as they are indepen-

dent from the dielectric filling.

For the structure without the overlay, kc< kL. Initially,

we might expect that as the thickness of the overlay with

the same dielectric constant as that of the main substrate is

increased, kc should approach k ~ and, when the entire

structure is filled, kc should be equal to kL. Therefore,

only dielectric layers with higher dielectric constants should

be used to achieve the required equalization for a given

thickness of the dielectric overlay. However, this is not

true, as the results prove (see Fig. 6(b)). In both parts of

Fig. 6, curves have been plotted which show Cl, Cz, and

kc versus the thickness of the overlay. For (,1= t,= 10,

the equalization can be reached for hi/h = 0.02. As has

been calculated, the directivity of this coupler (with d/s =

4.9:10’4 for hi/h = 0.02) is better than 60 dB, and the

return loss is better than – 60 dB over a frequency of one

octave. These parameters can be reached under the as-

sumption that the dispersion of the coupled lines can be

neglected and the coupler terminating impedances Z1~

and Zz~ are equal to the characteristic impedances 21 =

55.4 Q and Zz = 77.3 Q, respectively. The calculations of

the frequency-dependent characteristics of the asymmetric

coupled lines which have been carried out using the spec-

tral-domain full-wave analysis (not yet published) malke it

possible to state that the dispersion effect on the coupler

parameters can be neglected up to the normalized fre-

quency h/A = 0.01.

It is interesting to examine the behavior of the normal-

mode parameters in the proximity of the point where, for

the considered lines, kL = kc (d = O). These normal-mode

parameters have been calculated introducing the coupled

line unit parameters into the expressions derived by

Tripathi [2, eqs. (6), (7), (13)–(16)]. The computed charac-

teristics of the propagation constants 13Cand & voltage

mode numbers R ~ and R., and mode impedances Z,C and

217 have been plotted versus the normalized dielectric

overlay thickness hJh (Fig. 7).

In the curves of Fig. 7, the critical point of kL = kc has

been marked. For that point ancl in close proximity to it,

the propagation constants are notably modified, because

of significant changes in the field distribution of the two

modes. Moreover, it is for that point that, the expressions

for Z,< and Z,m (given e.g. by eq. (6) in [11]) become

indeterminate. As can be proved, however, by computing

limiting values for those quantities as d + O, the following

relations are obtained:

21, = + 21 22, = T 22 217 = T 21

and Zzn = + Zz (14)
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where the upper or lower signs are adequate for the cases

where f12 < & and D2 > @l, respectively. These relations

were discussed above in Section II. Equations (14) together

with the known relations between the normal-mode pa-

rameters lead to the following relation:

From examining the expressions

(15)

for the mode

impedances (see [7, eqs. (5) and (6)]), it is seen that there

are two points (the first when kc = /31/&kL and the

second when kc = & /&kL) for which either the .ZI.(m) or

the Z2T(Cl is zero (the ones that assume negative values for

the critical point and in its proximity). For the points

kc= &/&kL and kc= f12/filk~, the voltage mode num-

bers Rc and R. are equal to zero or infinity. as can be

observed from examining the expressions given in [7, eqs.

(4)]. An infinite value of the voltage mode ratio for the

C(T) mode is associated with a zero value of the current

mode ratio for the 7(c) mode. Thus, this is the situation

predicted by Kajfez [21], in which there is a unilateral

power flow (one conductor of a pair of transmission lines

carries the power in the + x direction while the other has

either a zero voltage or a zero current). We can also discuss

the situation in which power flows antiparallel (when one

conductor carries the power in the + x direction and the

other in the – x direction). This happens for the critical

point kL = kc and in its proximity when two normal

modes have the voltage vector in phase and the current

vector in antiphase, and appropriate mode impedances

have negative values. These remarks can complete Kajfez’s

considerations [21], where questions concerning the appli-

cations of the lines with such properties, although formu-

lated, are left with no answer.

In Fig. 8, a surface density of the charge distributed on

the two strips of the analyzed system of coupled lines,

computed for the two modes in the case where kL = kc, is

plotted. These curves are expected to be helpful in explain-

ing the phenomena associated with this type of propaga-

tion of the normal modes. As has been already mentioned,

these independent normal modes cannot be physically

excited separately by a system of voltage sources and

terminating impedances, because the condition for the

n.m.c. terminations [11], namely Z2r/Zl~ = – RCR., can-

not be satisfied in the circumstances where R ,R. >0.

Finally, notice the following simple, easily derived rela-

tion between the q term of eigenvectors given by equations

(6) and the voltage mode numbers R, and R.:

(16)

The effective coupling coefficient K can then be expressed

as

(17)

Equations (14)–(17) together with equations (10) are ex-

pected to be especially useful in designing couplers for

higher frequencies, by using the full-wave analysis and

normal-mode parameters rather than the quasi-static anal-

ysis and coupled-mode parameters.

IV. CONCLUSION

Applying the coupled-mode formulation of inhomoge-

neous lines, it has been proved that the structure of inho-

mogeneous asymmetric coupled lines can provide an ideal

backward-coupling directional coupler, if the inductive kL

and capacitive kc coupling coefficients are equal and the

terminating impedances Z,= are equal to the characteristic

impedances Z, (i =1, 2) of uncoupled lines. The phase ve-

locities of two normal modes propagating in this structure

under the assumption that the coupling coefficients are

equal can be substantially different. This difference can be

determined by the simple relation j3C– ~m = + (/31 – @z).

The behavior of the new ideal asymmetrical coupler, in

contrast to all well-known ideal couplers, cannot be inves-

tigated in the context of the n.m.c. termination concept.

In the literature on the backward-coupling directional

couplers, many authors [10] –[12], [22] refer to the state-

ment deduced by Louisell [23], who ascertained the exis-

tence of the ideal coupler under the condition where the

waves are synchronous (/31 = Pz ). This condition, together

with the assumption that the coupling coefficients are
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equal, implies further that only the symmetrical coupled-

Iine coupler in which two normal modes can be guided

with the same velocities can be ideally realized. The S

matrix of the ideal, asymmetrical coupler has been derived

and perturbation of the critical coupler parameters has

been investigated. The behavior of the normal-mode pa-

rameters (the voltage mode numbers and modal character-

istic impedances) has been examined in proximity to the

critical point, when kL = kc, and at that point. For that

point and in close proximity to it, the propagation con-

stants are notably modified, because of certain significant

changes in the field distribution of the two modes. It has

also been stated that in proximity to that critical point the

power carried by a pair of transmission lines flows antipar-

allel. The numerical results presented here confirm the

validity of the developed analysis and prove the possibility

of a
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