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The Scattering Parameters and Directional
Coupler Analysis of Characteristically
Terminated Asymmetric Coupled
Transmission Lines in an
Inhomogeneous Medium

KRZYSZTOF SACHSE

Abstract —The scattering matrix of asymmetric coupled two-line struc-
tures in an inhomogeneous medium terminated in a set of impedances
which are equal to the characteristic impedances of the individual, uncou-
pled lines has been derived in terms of the coupled-mode parameters. It
has been proved that the structure can compose an ideal, backward-cou-
pling directional coupler, perfectly matched and isolated at all frequencies,
if the inductive k, and capacitive k. coupling coefficients of the coupled
lines are equal. The effect of the nonideal equalization of the coupling
coefficients on the coupler critical parameters is then investigated. The
normal-mode parameters (mode numbers and mode impedances) in the
proximity of the point when k; = k.~ and at that point are also examined.

Numerical results confirm the validity of the developed analysis and prove

the possibility of a very high directivity asymmetrical coupler design.

I. INTRODUCTION

SYMMETRIC coupled lines seem to be of less prac-
Atical importance in microwave passive circuits than
their symmetric counterparts. The main reason is that
directional coupling occurs most distinctly and in a more
useful practical form when the coupled lines are identical.
Furthermore, in contrast to the symmetric arrangement, it
is much more complicated to calculate parameters of
asymmetric coupled lines and to analyze and design pas-
sive circuits with these lines.

Nevertheless, recently [1]-[9] a comprehensive study of
the physical behavior of guided modes and properties of
asymmetric coupled lines in an inhomogeneous medium
has been made, and several papers [10]-[16] dealing with
their analysis and applications have been published.
Growth of interest is due to the possibility of achieving
tightly coupled sections of transmission lines in certain
structures which are electrically nonsymmetrical, although
they can be structurally symmetrical [13], [14]. Using an
asymmetrical design of forward-coupling microstrip hy-

Manuscript received September 19, 1988: revised August 1. 1989. This
work was supported by the Polish Academy of Sciences under Contract
CPBP 02.02/3.3

The author 1s with the Institute of Telecommunication and Acoustics,
Wroclaw Technical University, 50-370 Wroclaw, Poland.

IEEE Log Number 8932992.

brids [16], a much higher directivity and a considerably
wider bandwidth can also be achieved.

Among passive circuits where asymmetric coupled lines
can be applied, directional couplers constitute an impor-
tant class of devices commonly used in microwave tech-
niques. In 1966 Cristal [17] was the first to introduce
coupled lines of unequal characteristic impedances in de-
signing asymmetrical couplers, offering the potential to
realize simultaneously in a single device directional cou-
pling and impedance transformation. Cristal’s method of
designing an ideal coupler, perfectly matched and isolated
at all frequencies, is valid only in the case of homogeneous
TEM lines. However, it is still used in designing inhomoge-
neous coupled-line couplers [14], because of a lack of an
exact rigorous design approach. The approximate TEM
approach can give reasonably good responses in all cases
when the relative difference between phase velocities of ¢
and 7 independent normal modes propagating in a system
of nonhomogeneous asymmetric coupled lines is small
enough. Then, one can accept that modal characteristic
impedances of two lines, Z,, and Z,,, i =1,2, are approxi-
mately equal to the even- and odd-mode impedances de-
fined by Cristal for each individual line of a set of asym-
metric coupled lines in a homogeneous medium, Z,, and
Z,,, respectively.

Gunton and Paige [11] have shown that for a general
asymmetric coupled-line coupler, resistive terminations can
be chosen so that the normal modes of the coupled system
are reflected without conversion from one to the other.
The introduction of such “non-rnode-converting” (n.m.c.)
terminations leads to relatively simple scattering S-param-
eter expressions describing the behavior of very general
directional couplers. These S parameters are expressed in
terms of the normal-mode parameters (voltage mode num-
bers R, and R, and mode impedances Z,, and Z, ).
Moreover, the well known “backward” coupled-line cou-
plers belong to that class of couplers so terminated. These
couplers are ideal, provided they are matched and the
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normal-mode waves are propagating with the same veloc.
ties. This latter condition can be satisfied only in the case
of the symmetrical lines. The conclusion is that the asym-
metrical “backward” coupler with inhomogeneous coupled
lines terminated by the n.m.c. impedances cannot be ideal;
if it exists, their terminating impedances cause the conver-
sion of the normal modes.

The authors of [14], [9], and [13] have observed that, for
specific structural parameters of asymmetric coupled lines
in an inhomogeneous medium, the impedances Z,, and /or
Z,. can assume values which are extremely high or ex-
tremely low (see, e.g., [14, table II]), and they can even be
negative [9], [13]. Then, the modal impedances are not
comparable to the ones defined by Cristal, and his approx-
imate method of coupler design cannot be employed. This
is the case that circuit designers do not know how to deal
with [18]. The singular behavior of the normal-mode pa-
rameters of asymmetric coupled lines has not yet been
clearly explained.

The purpose of this paper is to answer the question
raised on the existence or nonexistence of an ideal asym-
metric coupler and to present a method of design that can
improve substantially the performances of couplers de-
signed on the basis of existing methods. In Section II we
will derive—applying a coupled-mode formulation of in-
homogeneous lines successfully developed in the case of
symmetrical lines [19]—explicit expressions for the S pa-
rameters of the asymmetrical structure. The terminating
impedances are chosen in the most obvious and simple
way; namely they are chosen to be equal to the characteris-
tic impedances of the individual, uncoupled lines. It will be
proved in this section that such a choice of terminations
together with equalization of the coupling coefficients im-
poses conditions which are necessary and sufficient to
realize the ideal coupler. The effect of a nonideal equaliza-
tion of coupling coefficients on the return losses and
coupler directivity will then be investigated. In Section III,
the normal-mode parameters in proximity to the point
where k, = k. will be examined in detail, and simple new
formulas useful in asymmetric coupled-line coupler design
will be derived. Numerical results are given for specific
applications.

II. CouPLED-MODE ANALYSIS

The first part of this section restates some of the derived
results which are required and serve to introduce the
notation. The second and third parts solve the problems
raised above, in particular, deriving the S-parameter ex-
pressions for the structure of a generalized coupled-line
coupler (shown in Fig. 1) for the two cases where k; = k-
and k, = k., respectively.

A. General Description

There are two alternative forms of the differential equa-
tions describing a lossless pair of coupled transmission
lines: the first is written in terms of voltages V., V, and
currents [, I, [2], [11], the second in terms of four
well-known forward and backward power waves: a_, b,
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Fig. 1. Schematic representation of an asymmetric coupled-line coupler.

and a_, b_, respectively [19], [11]. These waves, which are
treated as the coupled modes, are defined by

1

where Z,=\/L /C,, and L, and C, are the self-inductances
and self-capacitances per unit length of line i in the
presence of the other (i =1,2).

In the literature, properties of asymmetric coupled lines
are customarily described with their normal-mode parame-
ters, defined by Tripathi [2] and obtained from solving the
V' —1I equations. From that analysis the Z matrix has been
derived. There is the simple matrix relationship between
the Z and S parameters:

(8)=[2)+()] '[(2)- ()] 1)
where U is the unit matrix. This expression, unfortunately,
brings very complicated, almost intractable formulas for
the scattering parameters [1]. Therefore, we have chosen an
alternative approach, in which the coupled-mode equations
are solved together with the boundary conditions at the
ports of the system.

Assuming a propagating wave term of the form e/(«?~ 8%
(w=2af, [ the frequency, B the propagation constant)
results in four normal modes of the coupler, two with
positive eigenvalues and two with negative ones, corre-
sponding to a pair of modes propagating in each direction.
The eigenvalues are + B, and + S, where B, and B, are
given [19] by

—(V,+ Z,1)) b, = (V,+27Z,1,)

Brzﬂovlifi

(r=cora).

(2a)

Here,

B+ B3
= \/*1‘2— - BIIBZkLkC

8=\/1—'8;'82 (1-k2)(1-k2) (2b)

0
kLsz/VLlLZ kC=Cm/VC1C2

and L, and C, are the mutual inductance and mutual
capacitance per unit length, respectively.

’Blzw LICI
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The eigenvector for the coupled-mode formulation can
be easily found and written in two useful forms:

a, 8, a, Y,
b = i %2 | and b = l Y (3)
a 8, | %, a- v | V.r
b_ a4,r b_ Y4,r

r

where

@, =n,,={(Bi+B)(B+8)

+ BBy (s>~ d?) } BB, d
oy ,(1a,,) = {2B1B; Bogsy | VB1Br sd
a,,(vs,) = {(:31(2) +8,)(Baay— B,)

— BB, (52— d?) } BB s

8,(v,) = (By+B8,) By~ B,)( B+ B,)

— BBy By — B,) d?

1 1
S=§(kc+kL) and d=—2‘(kc—kL).

In this short notation the subscripts 1 or 2 in parentheses
refer to the description of vy, , and v,, and the eigenvalues
+ B, are associated with the eigenvectors labeled + r.

B. The “Backward” Directional Coupler Analysis (k; =k~
=s5d=20)

The results reviewed in subsection A make it possible to
investigate the behavior of coupled lines terminated so that
they form a coupler with a voltage V,; at its port 1, as is
shown in Fig. 1. In general, the voltage generator V,; and
terminating impedances Z,, = Z; and Z,, = Z, will launch
four normal modes, which means that each coupled mode
a,,b,, a_,and b_ can be regarded as a linear combina-
tion of launched modes:

a,(x) At AL
b, (x) A Ay
= T AP+ T Aje P
a_(x) Asse| ! Ay |7
b_(X) >\4,4-0 A ,—C
A].,+77 Al,*ﬂ
A A .
H| T Ay B | T | A0 (4)
}\3,+'n 3,7
A4,+'17 >\4‘—'17

where (X, ,,) are the eigenvectors associated with eigen-
values + B8, and A, 4,, A;, and A, are the amplitudes of
launched modes, which can be estimated from the bound-
ary conditions at x =0 and x =/. However, considering
the complicated expressions for the eigenvectors given by
equations (3), this task seems to be difficult. Therefore,
taking into account that the well-known backward-cou-
pling couplers work purely only for k; =ks=5 (d=0),
we restrict further analysis to that single case. From (2) we

obtain
B, =Byv1xd B,=Bv1xd (5a)
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where

2 2 2p2
BO:\/Bl;BZ —Blﬁzsz and8=\/1— 142(1_.5'2)2.
0

The sign in (5a) can be chosen quite arbitrarily, without
any repercussions on the analysis. As will be shown in
Section ITI, for the case where k, = k. and in proximity to
that point (for k, =k ), two normal modes have the
voltage vector in phase (and current vector in antiphase).
This is in contrast to the situation which appears in
commonly analyzed structures, ¢.g. coupled microstrips,
where one of the two modes has voltage (and current)
vectors in phase and is called even or ¢ mode and the other
has them in antiphase and is called odd or # mode. Let us
assume that

B.=By1+6 and B, =BV1—3.

Then, the following identity can be proved:

By +B.=B+8, for ;> B,

(5b)

or
B +B.=B,+8, for B; <B,.

Thus it is evident that, for the nonhomogeneous lines when
B, # B,, the normal modes for asymmetric coupled lines in
an inhomogeneous medium are propagating with different
velocities. .

The eigenvectors associated with + 8, and + f5, eigen-
values can be given (for the case when k, =k.) in the

form

a, 1 a., 0

b+ _ 0 , b+ _ 1

a_| o a_| " |1/q

b_ + ¢ q b'_ —c 0

a, 0 'a+ 1 1

b+ 1 b+ 0

a_ = q a_ = O (6)

b_| . \0 b | . \l/q
where

_ \,/1811823 _ B,— B
BB BBy

The form of these vectors clearly shows the mechanism of
backward contradirectional coupling in which forward
waves (+modes) can only couple to backward waves
(— modes).

Since the eigenvectors have already been found, we can
write two sets of equations by inserting x =0 and x =/
into (4):

a, A4, b, Ae ™
a, A, b, Al

= = 7
b | = O g [amd | =@ | O)
b, A, ay A el
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where (¢) is a matrix whose columns are eigenvectors given
by (6); 6, and 6, are electric lengths of coupled-line
sections for ¢ and 7 modes, respectively; and a, and b,
are the incident and reflected waves at port j. From (7) we
can easily obtain the transfer T matrix, relating the inci-
dent and reflected waves at the input (1,2) and output
(3,4) ports:

a4y b,
- 4
b, (T) a, (®)

b, ay

where (T') = (¢)(d) and (d) is a matrix obtained by inver-
sion of the ¢ matrix and by multiplying their rows by e/,
e, e/ and e /%, respectively. The following formulas
for the T parameters result:

q (1 _

,= 1_q2(;e10¢—qe ,9,,) T,=T;=0
9 0 -8
14~ 1__q2(ejc_e )
q e 1 %)

Ty=T,=0 Ty =— l_qz(‘le je‘_;eﬂ")
T, =T,*
T, =T4=0 Ty =-Ty Ty =Ty*
Th=-Ty4 Tp=T,5=0 Tu=Ty*.

Using relations between the S and T parameters, one can
obtain

S$11=8p=8;5;=S84=0 S14=83=83=58,=0

S g _g S jKsin#d

BT T ke cosf + jsinf

1-K?
Si3=8y = — e /'
V1—K?%cosf + jsind
Sp4=Sgp = Sy /2 (10a)
where
o 2 ,_ bt o0,
T 1+4q’ B “=gr0, 10

The above results of analysis reveal the following prop-
erties of the structure of asymmetric coupled lines when
they are “compensated” (k, = k) and terminated charac-
teristically (Z, = Z,): 1) The structure composes an ideal
“backward” contradirectional coupler at all frequencies. 2)
The frequency dependences of the coupling and transmis-
sion losses in the main line are expressed by the same
relations as for conventional couplers (in both symmetrical
and asymmetrical arrangements of homogeneous coupled
lines) [19], [17]; the difference consists only in replacing in
the known formulas the coupling coefficient k& with the
effective coupling coefficient K, which is a function of s
and a so-called asymmetry factor #, defined as B, /B, for
B,> B, or B, /B, for B, <PB,. 3) As we can see, the phase
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h((S,ﬂ)/S n=1 K(s,n)/s
1 1
n
] i >
0 1s 0 1n
Tuts,n
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I
|
1
i
a 1n
Fig. 2 Behavior of the K(s, n) and u(s, n) functions,

shift between the output signals Ay =a/2(1+ f/f, u),
where f, and f are the center frequency (for § = 7/2) and
the sample frequency, respectively. Deviation of the phase
shift from 90° is proportional to the frequency and to the
u(s,n) function which evaluates the relative difference
between phase velocities of the ¢ and # modes. The
behavior of the K(s, n) and u(s, n) functions is illustrated
by curves plotted in Fig. 2.

The conclusion that arises from the behavior of these
functions is as follows: 1)The coupling decreases with an
increase in asymmetry. For the case where phase constants
B, and B, are substantially different (n = 0), the effective
coupling of the lines is weak even if the coupling coeffi-
cient of these lines is high. 2) The higher the degree of
asymmetry, the higher the deviation of phase shift from
90°. For tightly coupled lines a small difference in the
phase constants can substantially perturb the phase re-
sponse of the coupler.

In order to confirm the validity of the developed analy-
sis, the § parameters as a function of the normalized
frequency f/f, have been calculated, assuming the follow-
ing coupled-mode parameters: Z, =50 Q, Z,=70 €,
B,/B,=09, and s=0.5. These calculations have been
carried out using two independent methods of analysis,
namely the method applying coupled-mode formulation,
which is the one presented here, and the method developed
by Tripathi [2] that formulates the Z matrix, mentioned
above in subsection A. In other words, the S parameters
have been calculated using equations (10a) (the result of
the first method of the analysis) and equations (1) (the
result of the second). The effective coupling coefficient K
and relative difference of the mode phase velocities u,
computed according to equations (10b), are equal to 0.4993
and 0.06075, respectively. Next, the normal-mode parame-
ters which are necessary for the second calculations have
been estimated using expressions derived by Kal er al. [7,
€gs. (4)—(6)] and appear as follows: Z, .= —Z, =50 Q=
Zy, Zy,=—2,,=70 =12, R,=0.316534532, and R,
= 4.42289816. As has been stated from the second calcula-
tions (using (1)), |S,,|, |Si4l and [Sy| are less than 105 at
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all frequencies. It has also been found that the frequency
responses of coupling, transmission losses, and of phase
shift agree exactly with the ones calculated using equations
(10a).

The mode impedances that have been calculated and
presented here reached unexpected, negative values. The
singular behavior of the normal-mode parameters in prox-
imity to the point when k; = k. and at that point will be
discussed in Section III. We shall present below the cou-
pled-mode analysis extended to the case when d+0 in
order to determine the effect of nonideal equalization of
the inductive and capacitive coupling coefficients on the
coupler critical parameters.

C. Perturbation of the Coupler Critical Parameters
(d+0,d/s<1)

Using general expressions for the eigenvectors given by
equations (3), restricting the analysis only to the case
where d /s <1 in order to get simpler final formulas, and
developing the coupled-mode analysis in the same fashion
as was done previously, we obtain the following terms of
the ¢ and d matrices:

€11 = Cp=C3 =014 =1 Ca=C3=4d
1

Cyp = Cpy=—

32~ Cas
q

021=qal(d/s) c31=qb1(d/s)

1 1
c12=;a2(d/s) c42=;b2(d/s)

c13=4qa;(d/s) c3=qby(d/s)

1 1
c24=;a4(d/s) c34=;b4(d/s) (11)

where
ay= [(Bi+B.)(By+ B.)+BiBs?] /a
a,=[(B,=B)(B.—B.) +BiBrs*] /a
ay=[(B,— B,)(B,— B,)+ BiB>s?] /b
ay=[(Bi+B,)(Bo+B,)+BiBos?] /b
by=2/B.BasBy/a  by=2(B\By By /a
by=2/B.BsB/b  by=2/B,BysPy/b
a=(By+ BB~ B.)— BiBys>

b=(B,+B)(B—B,)— BBy’
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and
dyy = pe’’ dy=—pge " dp=—pgie
dy, = pe’™

1
dy ";dzz dyy=—qds, dyy=—qdy

1
d44 - ;d41

1
— 30y TGl Ty t ;CSI) eﬂ"(d/s)

5043— qcq — 013)ej0‘(d/s)

1 1 i,
- _“1“‘743_‘313_‘1042 € j"(d/s)

|
|
2( !
|

1
Cla=Cys—Cpp+ ’['1“013) ejo‘(d/s)

dy3=pg*(cy+ geyy — ge3— ey )e P (d/s)
dyy = pq*(— 3 — gey + c3y + qeyg) e % (d /s)

1 1
034"';‘321_031_5‘724)810"(‘1/5) (12)

ds = pq’

where
1
P=71C 2

By multiplication of these two matrices, the transfer T
matrix can be obtained and used for calculating the cou-
pler parameters. It has been proved that coupler matching,
directivity, and phase shift are the only ones to be pertur-
bated substantially when the relative difference between
coupling coefficients, d /s, increases. The coupler directiv-
ity, for instance, can be computed from the following
relation:

D(dB) = 20log(L/M )+20log|s /d| (13)

where
2
L=—sinfy1— K?cos*8
K
M=\/(Ssin0ucos0 + TcosQusinf)*+ (Vsinfusind)’
1
S=|qg——
q

1
V=—a,+qa,+q°b,—b,.
q

a,+(1—¢*)b, T=gq(a,+a,)—b—b,

Similar relationships can be derived for calculating the
reflection coefficients |S;;| and |S,,|.

The two examples of numerical calculations illustrate
the usefulness of the above analysis. In the first, we have
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Fig. 3. Cross-sectional view of coupled microstrip lines (a) without and

(b) with dielectric overlay
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Fig. 4. Coupling, reflection coefficient |S;,}, and directivity against nor-
malized frequency 6 for a coupler with Fig. 3(a) configuration of
coupled lines (wy /h =04, w, /h=10.11, s /h =0.08, ¢, =10) —— [12],
optimized terminations Z;7=60.7 € and Z,;=85.0 @ — — this
theory, characteristic terminations Z;; = Z; =+ L, /C, =61.0 & and
Zyr=2Zy=+y/L,/C, =84.6 Q.

estimated the frequency-dependent parameters of the cou-
pler designed by Tripathi [12], who applied the n.m.c.
termination concept, the Z-§ matrix transformation, and
an iterative procedure which can optimize the coupler
performance in terms of the terminating impedances. The
structural parameters of the asymmetric coupled mi-
crostrip lines shown in Fig. 3(a) have been chosen to be
the same as those of Tripathi (w;/h =04, w,/h=0.11,
s/h=0.08, and ¢, =10).

The results of our calculations carried out using the
spectral-domain approach and variational method [20] are
L,/p,=0.4683, L,/p,=0.6376, L, /u,=0.3015, C, /¢,
=17.88, C,/e,=12.66, and C, /e,=7.548. From these
self- and mutual inductances and capacitances the follow-
ing coupled-mode parameters have been estimated: &k, =
0.5518, k. =0.5017, B,/B,=0.9817, Z,=61.0 ©, and Z,
= 84.6 Q. The characteristics computed according to equa-
tions (10)—(13) can be compared to the ones derived by
Tripathi [12] (see Fig. 4). It should be pointed out that the
terminating impedances obtained from Cristal’s approxi-
mate TEM approach (assumed by Tripathi as a suitable
starting point for the optimization procedure) give a rather
poor matching (for Z,,=/Z, . Z, =499 @ and Z,,=

VZs.Z,y, =1032 £, |Sy| is even less than —15 dB).
Though the optimization procedure used by Tripathi made

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, NO. 4, APRIL 1990

10;—

s=0.85

5=0.85

Fig. 5. Coupler directivity D(dB) = D (dB)+20log|s/d| against nor-
malized frequency 6 = (%/2)f/f, with n and s coefficients as parame-
ters.

it possible to minimize the reflection coefficient at the
input ports, the transmission coefficient between the input
and the isolated port remained high. The reason is that the
parameters of the coupler designed utilizing both the n.m.c.
termination concept and the optimization procedure de-
pend on the difference between the normal-mode phase
velocities (in that case Av/v = 0.0363). The almost ideal
realization of that coupler achieved in the overlayered
microstrip structure (shown in Fig. 3(b)) will be presented
in Section III.

In the second example, mentioned before, we present
numerical calculations of the frequency-dependent direc-
tivity of the coupler carried out using equations (13) for
the symmetrical version (n =1) of the coupler as well as
the asymmetrical one with a high degree of asymmetry
(n=10.1). The results of the calculations are plotted in Fig.
5. An excellent agreement with the results of similar calcu-
lations carried out using Krage and Haddad’s expressions
[19], derived for the symmetrical structure of coupled lines,
has been stated. Generally, as can be seen from Fig. 5, the
directivity of the asymmetrical coupled-line coupler is
higher than that of the symmetrical counterpart.

III. DESIGN OF A COUPLER WITH IMPROVED
DIRECTIVITY AND BEHAVIOR OF
NORMAL-MODE PARAMETERS

To design a very high directivity coupler, it is necessary
to apply the structure of coupled lines for which the
equalization of the coupling coefficients might be achieved.
Such a structure is expected to be a coupled line structure
with a dielectric overlay (shown in Fig. 3(b)). In order to
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Fig. 6. (a) Self-capacitances C; and C, and (b) coupling coefficients k&,

and k. of coupled lines from Fig,. 3(b) versus 4, /h for €,; =16 (——)
and 10 (—-—). The structural parameters of coupled lines are the
same as those given in Fig. 4.

prove its usefulness in a high-directivity asymmetric cou-
pler design, the coupled line parameters have been calcu-
lated versus the dielectric overlayer thickness /4, for several
values of the dielectric constant of this layer €,,. The same
structural parameters as those of Tripathi and the ones of
our previous calculations have been chosen. The self-
inductances and the mutual inductance per unit length of
the lines have already been calculated, as they are indepen-
dent from the dielectric filling.

For the structure without the overlay, k. < k,. Initially,
we might expect that as the thickness of the overlay with
the same dielectric constant as that of the main substrate is
increased, k. should approach k; and, when the entire
structure is filled, k. should be equal to k. Therefore,
only dielectric layers with higher dielectric constants should
be used to achieve the required equalization for a given
thickness of the dielectric overlay. However, this is not
true, as the results prove (see Fig. 6(b)). In both parts of
Fig. 6, curves have been plotted which show C;, C,, and
k. versus the thickness of the overlay. For €, =¢, =10,
the equalization can be reached for h,/h =0.02. As has
been calculated, the directivity of this coupler (with d /s =
4.9-107* for h;/h=0.02) is better than 60 dB, and the
return loss is better than —60 dB over a frequency of one
octave. These parameters can be reached under the as-
sumption that the dispersion of the coupled lines can be
neglected and the coupler terminating impedances Z,;,
and Z,, are equal to the characteristic impedances Z, =

- b
q’l I
8t HAW
:5 ’ l 20
~N
200 | I
’ I L

-100"
© @

Fig. 7. (a) Effective dielectric constants € , = {B, /(wyfﬂofo)}zﬂ =
¢, 7. (b) Voltage mode numbers R,. (c), (d) Modal characteristic
impedances Z,,,1=1,2, of coupled lines with Fig. 3(b) configuration
versus hy /h. €, =¢,. The structural parameters of coupled hnes are
given in Fig. 4.

55.4 Q and Z,=77.3 Q, respectively. The calculations of
the frequency-dependent characteristics of the asymmetric
coupled lines which have been carried out using the spec-
tral-domain full-wave analysis (not yet published) make it
possible to state that the dispersion effect on the coupler
parameters can be neglected up to the normalized fre-
quency kA /A =0.01.

It is interesting to examine the behavior of the normal-
mode parameters in the proximity of the point where, for
the considered lines, k; = k. (d = 0). These normal-mode
parameters have been calculated introducing the coupled
line unit parameters into the expressions derived by
Tripathi [2, egs. (6), (7), (13)-(16)]. The computed charac-
teristics of the propagation constants 8, and B, voltage
mode numbers R, and R, and mode impedances Z,. and
Z,. have been plotted versus the normalized dielectric
overlay thickness 7, /h (Fig. 7).

In the curves of Fig. 7, the critical point of k, = k. has
been marked. For that point and in close proximity to it,
the propagation constants are notably modified, because
of significant changes in the field distribution of the two
modes. Moreover, it is for that point that the expressions
for Z, and Z,_ (given e.g. by eq. (6) in [11]) become
indeterminate. As can be proved, however, by computing
limiting values for those quantities as d — 0, the following
relations are obtained:

Z,=x27, Z,,=+2, Z,,=+7Z,

and Z, =+ Z,

(14)
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Sketch of the charge surface density distributed on the two strips of analyzed system of coupled lines from Fig. 3(b)

for the two modes 1 the case of k; = k.. V, and Q, /¢, are the potential and total charge on the strip . respectively.

hy/h =002, ¢, =€, =10.

where the upper or lower signs are adequate for the cases
where B, <f, and B,> f,, respectively. These relations
were discussed above in Section II. Equations (14) together
with the known relations between the normal-mode pa-
rameters lead to the following relation:

R.R

¢ T

—1 (15)
1

From examining the expressions for the mode
impedances (see [7, eqgs. (5) and (6)]), it is seen that there
are two points (the first when k.=p,/B,k; and the
second when k.=, /B,k;) for which either the Z, ., or
the Z,,,, is zero (the ones that assume negative values for
the critical point and in its proximity). For the points
ke=B./B,k, and k.= B,/Bk,, the voltage mode num-
bers R, and R are equal to zero or infinity, as can be
observed from examining the expressions given in [7, egs.
(4)]. An infinite value of the voltage mode ratio for the
c(7) mode is associated with a zero value of the current
mode ratio for the «(c¢) mode. Thus, this is the situation
predicted by Kajfez [21], in which there is a unilateral
power flow (one conductor of a pair of transmission lines
carries the power in the + x direction while the other has
either a zero voltage or a zero current). We can also discuss
the situation in which power flows antiparallel (when one
conductor carries the power in the + x direction and the
other in the — x direction). This happens for the critical
point k; =k, and in its proximity when two normal
modes have the voltage vector in phase and the current
vector in antiphase, and appropriate mode impedances
have negative values. These remarks can complete Kajfez’s
-considerations [21], where questions concerning the appli-
cations of the lines with such properties, although formu-
lated, are left with no answer.

In Fig. 8, a surface density of the charge distributed on
the two strips of the analyzed system of coupled lines,
computed for the two modes in the case where k; =~ k, is
plotted. These curves are expected to be helpful in explain-
ing the phenomena associated with this type of propaga-
tion of the normal modes. As has been already mentioned,
these independent normal modes cannot be physically
excited separately by a system of voltage sources and

terminating impedances, because the condition for the
n.m.c. terminations [11}], namely Z,,/Z,-=— R R, can-
not be satisfied in the circumstances where R R > 0.

Finally, notice the following simple, easily derived rela-
tion between the g term of eigenvectors given by equations
(6) and the voltage mode numbers R, and R :

- (16)

T

=V R

The effective coupling coefficient K can then be expressed

as
2/R.R,

T R.+R,

(17)

Equations (14)—(17) together with equations (10) are ex-
pected to be especially useful in designing couplers for
higher frequencies, by using the full-wave analysis and
normal-mode parameters rather than the quasi-static anal-
ysis and coupled-mode parameters.

IV. CoNcLUSION

Applying the coupled-mode formulation of inhomoge-
neous lines, it has been proved that the structure of inho-
mogeneous asymmetric coupled lines can provide an ideal
backward-coupling directional coupler, if the inductive k,
and capacitive k. coupling coefficients are equal and the
terminating impedances Z , are equal to the characteristic
impedances Z (i =1,2) of uncoupled lines. The phase ve-
locities of two normal modes propagating in this structure
under the assumption that the coupling coefficients are
equal can be substantially different. This difference can be
determined by the simple relation 8, — B8, = +(B;—8,).
The behavior of the new ideal asymmetrical coupler, in
contrast to all well-known ideal couplers, cannot be inves-
tigated in the context of the n.m.c. termination concept.

In the literature on the backward-coupling directional
couplers, many authors [10]-[12], [22] refer to the state-
ment deduced by Louisell [23], who ascertained the exis-
tence of the ideal coupler under the condition where the
waves are synchronous (8, = f,). This condition, together
with the assumption that the coupling coefficients are
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equal, implies further that only the symmetrical coupled-
line coupler in which two normal modes can be guided
with the same velocities can be ideally realized. The S
matrix of the ideal, asymmetrical coupler has been derived
and perturbation of the critical coupler parameters has
been investigated. The behavior of the normal-mode pa-
rameters (the voltage mode numbers and modal character-
istic impedances) has been examined in proximity to the
critical point, when k; = k., and at that point. For that
point and in close proximity to it, the propagation con-
stants are notably modified, because of certain significant
changes in the field distribution of the two modes. It has
also been stated that in proximity to that critical point the
power carried by a pair of transmission lines flows antipar-
allel. The numerical results presented here confirm the
validity of the developed analysis and prove the possibility
of a very high directivity asymmetrical coupler design.
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